# Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning

Cheng Lu\*, Huayu Chen\*, Jianfei Chen, Hang Su, Chongxuan Li, Jun Zhu

## **Tsinghua University**

## **Exact Energy-Guided Diffusion Sampling**

Suppose we have pretrained a diffusion model to fit data distribution  $q_0(x_0)$ . We'd like to sample from an edited distribution defined by an energy function:

$$p_0(m{x}_0)$$
  $\propto$   $q_0(m{x}_0)e^{-m{\mathcal{E}}(m{x}_0)}$  energy function in data space

The form of  $p_0(x_0)$  is general and actually stems from constrained optimization:

$$\min_{p} \mathbb{E}_{p(\boldsymbol{x})}[\mathcal{E}(\boldsymbol{x})] + \frac{1}{\beta} D_{\mathrm{KL}}(p(\boldsymbol{x}) \parallel q(\boldsymbol{x})) \implies p^*(\boldsymbol{x}) \propto q(\boldsymbol{x}) e^{-\mathcal{E}(\boldsymbol{x})}$$

To perform diffusion sampling, the required score function is:

$$abla_{\mathbf{x}} \log p_t(\mathbf{x}_t) = 
abla_{\mathbf{x}} \log q_t(\mathbf{x}_t) - 
abla_{\mathbf{x}} \mathcal{E}_t(\mathbf{x})$$
desired score pretrained score energy guidance

where  $\mathcal{E}_t(\mathbf{x})$  satisfies

$$p_t(\boldsymbol{x}_t) \propto q_t(\boldsymbol{x}_t) e^{-\mathcal{E}_t(\boldsymbol{x}_t)}$$

**Key Observation**: Intermediate energy functions  $\mathcal{E}_t(\mathbf{x})$  are completely determined by the data distribution q(x) and the energy function  $\mathcal{E}(\mathbf{x}_0)$  at time 0.

**Theorem 1**. The intermediate score functions satisfies:

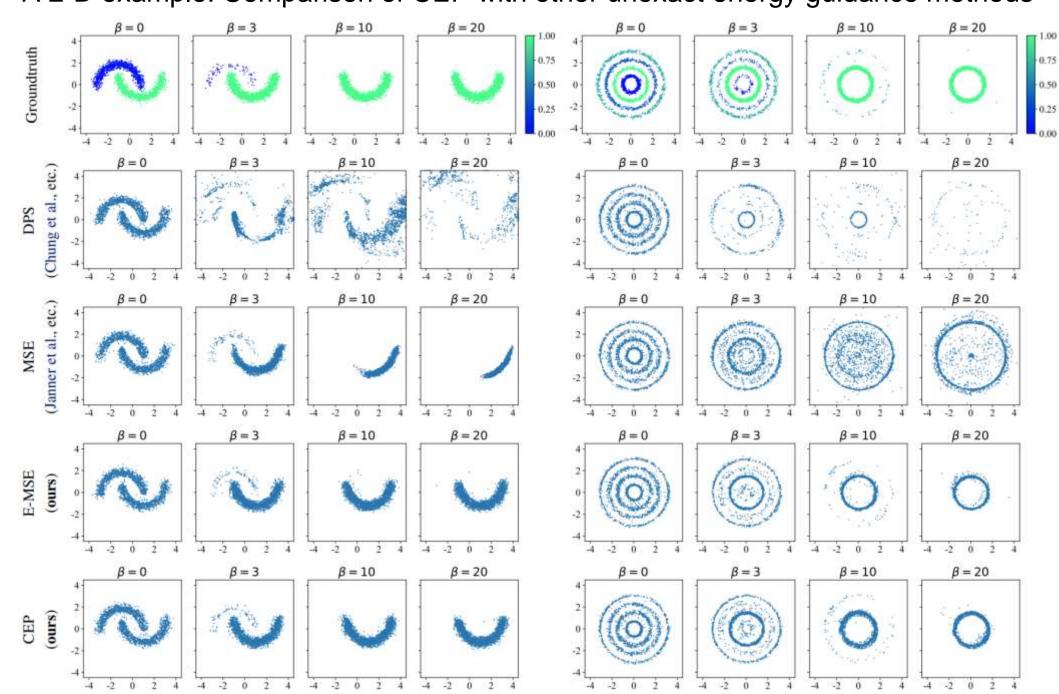
$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) = \underbrace{\nabla_{\boldsymbol{x}_t} \log q_t(\boldsymbol{x}_t)}_{\approx -\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t) / \sigma_t} - \underbrace{\nabla_{\boldsymbol{x}_t} \mathcal{E}_t(\boldsymbol{x}_t)}_{energy \ guidance}$$

$$\mathcal{E}_t(oldsymbol{x}_t) \coloneqq \left\{ egin{array}{ll} eta \mathcal{E}(oldsymbol{x}_0), & t = 0, \ -\log \mathbb{E}_{q_{0t}(oldsymbol{x}_0 | oldsymbol{x}_t)} \left[ e^{-eta \mathcal{E}(oldsymbol{x}_0)} 
ight], & t > 0. \end{array} 
ight.$$

#### We cannot use arbitrary intermediate energy guidance!

| Method     | Optimal Solution of Energy                                                                                      | Optimal Solution of Guidance                                                                                                                                                                                                                                                                                   | Exact Guidance |  |
|------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| CEP (ours) | $-\log \mathbb{E}_{q_{0t}(\boldsymbol{x}_0 \boldsymbol{x}_t)}\left[e^{-\mathcal{E}_0(\boldsymbol{x}_0)}\right]$ | $\mathbb{E}_{q_{0t}(\boldsymbol{x}_0 \boldsymbol{x}_t)} \left[ -e^{\mathcal{E}_t(\boldsymbol{x}_t) - \mathcal{E}_0(\boldsymbol{x}_0)} \nabla_{\boldsymbol{x}_t} \log q_{0t}(\boldsymbol{x}_0 \boldsymbol{x}_t) \right]$                                                                                        | 1              |  |
| MSE        | $\mathbb{E}_{q_{0t}(oldsymbol{x}_0 oldsymbol{x}_t)}[\mathcal{E}_0(oldsymbol{x}_0)]$                             | $\mathbb{E}_{q_{0t}(oldsymbol{x}_0   oldsymbol{x}_t)} \Big[ \mathcal{E}_0(oldsymbol{x}_0)  abla_{oldsymbol{x}_t} \log q_{0t}(oldsymbol{x}_0   oldsymbol{x}_t) \Big]$                                                                                                                                           | X              |  |
| DPS        | $\mathcal{E}_0\left(\mathbb{E}_{q_{0t}(oldsymbol{x}_0 oldsymbol{x}_t)}[oldsymbol{x}_0] ight)$                   | $\mathbb{E}_{q_{0t}(\boldsymbol{x}_0 \boldsymbol{x}_t)} \Big[ \left( \left( \nabla \mathcal{E}_0 \left( \mathbb{E}_{q_{0t}(\boldsymbol{x}_0 \boldsymbol{x}_t)}[\boldsymbol{x}_0] \right) \right)^\top \boldsymbol{x}_0 \right) \nabla_{\boldsymbol{x}_t} \log q_{0t}(\boldsymbol{x}_0 \boldsymbol{x}_t) \Big]$ | ×              |  |

#### A 2-D example: Comparison of CEP with other unexact energy guidance methods

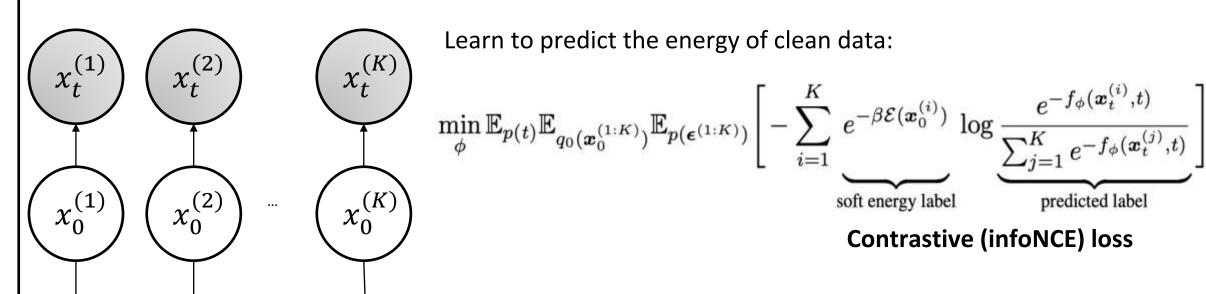


## **How to Estimate the Exact Energy Guidance?**

The exact diffused energy is hard to estimate due to the log-expectation-exp form:

$$-\log \mathbb{E}_{q_{0t}(m{x}_0|m{x}_t)}\left[e^{-eta \mathcal{E}(m{x}_0)}
ight]$$
 Intractable: log-expectation-exp

We propose **Contrastive Energy Prediction (CEP)**: a training objective for learning the exact intermediate energy guidance



**Theorem 2.** For all K > 1, The optimal guidance model satisfies

$$abla_{oldsymbol{x}_t} f_{\phi^*}(oldsymbol{x}_t,t) = 
abla_{oldsymbol{x}_t} \mathcal{E}_t(oldsymbol{x}_t)$$

Contrastively predict the energy

Compute  $e^{-\beta \mathcal{E}(\boldsymbol{x}_0^{(i)})}$  may be numerically unstable, so we normalize the energy for each batch:

$$\min_{\phi} \mathbb{E}_{p(t)} \mathbb{E}_{q_0(\boldsymbol{x}_0^{(1:K)})} \mathbb{E}_{p(\boldsymbol{\epsilon}^{(1:K)})} \bigg[ - \sum_{i=1}^{K} \frac{e^{-\beta \mathcal{E}(\boldsymbol{x}_0^{(i)})}}{\sum_{j=1}^{K} e^{-\beta \mathcal{E}(\boldsymbol{x}_0^{(j)})}} \log \underbrace{\frac{e^{-f_{\phi}(\boldsymbol{x}_t^{(i)},t)}}{\sum_{j=1}^{K} e^{-f_{\phi}(\boldsymbol{x}_t^{(j)},t)}}} \bigg] \\ \text{self-normalized energy label}$$

### **Connection between CEP and Classifier Guidance**

If  $\mathcal{E}_0(m{x}_0) = -\log q_0(c|m{x}_0)$  and eta = 1 :  $p_0(m{x}_0) \propto q_0(m{x}_0) q(c|m{x}_0) \propto q(m{x}_0|c)$ 

The training objective in Theorem 2 becomes:

$$\mathbb{E}_{t,\boldsymbol{\epsilon}^{(1:K)}} \mathbb{E}_{\prod_{i=1}^{K} q_0(\boldsymbol{x}_0^{(i)}, c^{(i)})} \left[ -\sum_{i=1}^{K} \log \frac{e^{-f_{\phi}(\boldsymbol{x}_t^{(i)}, c^{(i)}, t)}}{\sum_{j=1}^{K} e^{-f_{\phi}(\boldsymbol{x}_t^{(j)}, c^{(i)}, t)}} \right]$$

Classifier Guidance:

$$\mathbb{E}_{t,\boldsymbol{\epsilon}^{(1:K)}} \mathbb{E}_{\prod_{i=1}^K q_0(\boldsymbol{x}_0^{(i)},c^{(i)})} \left[ -\sum_{i=1}^K \log \frac{e^{-f_{\phi}(\boldsymbol{x}_t^{(i)},c^{(i)},t)}}{\sum_{j=1}^M e^{-f_{\phi}(\boldsymbol{x}_t^{(i)},c^{(j)},t)}} \right]$$
Classify condition

- CEP is essentially based on info-NCE, Classifier Guidance is an cross entrophy objective.
- Both can guarantee exact guidance, but CEP can be generalized to cases with no conditioning variables (energy functions).

ImageNet256 Guided sampling Similar performance





Classifier guidance (Dhariwal & Nichol, 2021) Energy guidance (ours)

# Application: Offline Reinforcement Learning

The optimal policy of constrained policy optimization in offline RL satisfies:

$$\max_{\pi} \mathbb{E}_{\boldsymbol{s} \sim \mathcal{D}^{\mu}} \left[ \mathbb{E}_{\boldsymbol{a} \sim \pi(\cdot | \boldsymbol{s})} Q_{\psi}(\boldsymbol{s}, \boldsymbol{a}) - \frac{1}{\beta} D_{\mathrm{KL}} \left( \pi(\cdot | \boldsymbol{s}) || \mu(\cdot | \boldsymbol{s}) \right) \right]$$

$$\pi^{*}(\boldsymbol{a} | \boldsymbol{s}) \propto \mu(\boldsymbol{a} | \boldsymbol{s}) e^{\beta Q_{\psi}(\boldsymbol{s}, \boldsymbol{a})}$$

- We train a diffusion model  $\mu_{\theta}(a|s)$  to imitate the behavior policy  $\mu(a|s)$ .
- We train a Q-net as an energy function to sample from the optimal policy.

$$\mathcal{T}^{\pi}Q_{\psi}(oldsymbol{s},oldsymbol{a})pprox r(oldsymbol{s},oldsymbol{a})+\gammarac{\sum_{\hat{oldsymbol{a}}'}e^{eta_{Q}Q_{\psi}(oldsymbol{s}',\hat{oldsymbol{a}}')}Q_{\psi}(oldsymbol{s}',\hat{oldsymbol{a}}')}{\sum_{\hat{oldsymbol{a}}'}e^{eta_{Q}Q_{\psi}(oldsymbol{s}',\hat{oldsymbol{a}}')}}$$

 We use the proposed CEP method to train another diffused Q-network to estimate the energy guidance term when performing guided sampling:

$$\nabla_{\boldsymbol{a}_{t}} \log \pi_{t}(\boldsymbol{a}_{t}|\boldsymbol{s}) = \underbrace{\nabla_{\boldsymbol{a}_{t}} \log \mu_{t}(\boldsymbol{a}_{t}|\boldsymbol{s})}_{\approx -\epsilon_{\theta}(\boldsymbol{a}_{t}|\boldsymbol{s},t)/\sigma_{t}} + \nabla_{\boldsymbol{a}_{t}} \underbrace{\mathcal{E}_{t}(\boldsymbol{s},\boldsymbol{a}_{t})}_{\approx f_{\phi}(\boldsymbol{s},\boldsymbol{a}_{t},t)}$$

$$e \quad \mathcal{E}_{t}(\boldsymbol{s},\boldsymbol{a}_{t}) = \log \mathbb{E}_{\mu_{0t}(\boldsymbol{a}_{0}|\boldsymbol{a}_{t},\boldsymbol{s})} \left[ e^{\beta Q_{\psi}(\boldsymbol{s},\boldsymbol{a}_{0})} \right]$$

• The training objective for the diffused Q-network is.

$$\min_{\phi} \mathbb{E}_{t, \boldsymbol{s}, \boldsymbol{\epsilon}} - \sum_{i=1}^{K} \frac{e^{\beta Q_{\psi}(\boldsymbol{s}, \boldsymbol{a}^{(i)})}}{\sum_{j=1}^{K} e^{\beta Q_{\psi}(\boldsymbol{s}, \boldsymbol{a}^{(j)})}} \log \frac{e^{f_{\phi}(\boldsymbol{s}, \boldsymbol{a}^{(i)}_{t}, t)}}{\sum_{j=1}^{K} e^{f_{\phi}(\boldsymbol{s}, \boldsymbol{a}^{(j)}_{t}, t)}}$$

• We use DPM-solver to accelerate the sampling precedure D4RL evaluations:

| Dataset              | Environment    | CQL   | BCQ   | <b>IQL</b> | SfBC  | DD            | Diffuser | D-QL  | D-QL@1 | QGPO (ours)                       |
|----------------------|----------------|-------|-------|------------|-------|---------------|----------|-------|--------|-----------------------------------|
| Medium-Expert        | HalfCheetah    | 62.4  | 64.7  | 86.7       | 92.6  | 90.6          | 79.8     | 96.1  | 94.8   | $93.5 \pm 0.3$                    |
| Medium-Expert        | Hopper         | 98.7  | 100.9 | 91.5       | 108.6 | 111.8         | 107.2    | 110.7 | 100.6  | $\textbf{108.0} \pm \textbf{2.5}$ |
| Medium-Expert        | Walker2d       | 111.0 | 57.5  | 109.6      | 109.8 | 108.8         | 108.4    | 109.7 | 108.9  | $\textbf{110.7} \pm \textbf{0.6}$ |
| Medium               | HalfCheetah    | 44.4  | 40.7  | 47.4       | 45.9  | 49.1          | 44.2     | 50.6  | 47.8   | $54.1 \pm 0.4$                    |
| Medium               | Hopper         | 58.0  | 54.5  | 66.3       | 57.1  | 79.3          | 58.5     | 82.4  | 64.1   | $98.0 \pm 2.6$                    |
| Medium               | Walker2        | 79.2  | 53.1  | 78.3       | 77.9  | 82.5          | 79.7     | 85.1  | 82.0   | $\textbf{86.0} \pm \textbf{0.7}$  |
| Medium-Replay        | HalfCheetah    | 46.2  | 38.2  | 44.2       | 37.1  | 39.3          | 42.2     | 47.5  | 44.0   | $\textbf{47.6} \pm \textbf{1.4}$  |
| Medium-Replay        | Hopper         | 48.6  | 33.1  | 94.7       | 86.2  | 100.0         | 96.8     | 100.7 | 63.1   | $96.9 \pm 2.6$                    |
| Medium-Replay        | Walker2d       | 26.7  | 15.0  | 73.9       | 65.1  | 75.0          | 61.2     | 94.3  | 75.4   | $84.4 \pm 4.1$                    |
| Average (Locomotion) |                | 63.9  | 51.9  | 76.9       | 75.6  | 81.8          | 75.3     | 86.3  | 75.6   | 86.6                              |
| Default              | AntMaze-umaze  | 74.0  | 78.9  | 87.5       | 92.0  | ( <u>;</u> ≧% | 2        | 68.6  | 69.4   | $96.4 \pm 1.4$                    |
| Diverse              | AntMaze-umaze  | 84.0  | 55.0  | 62.2       | 85.3  | (175)         | 2.       | 53.0  | 56.4   | $74.4 \pm 9.7$                    |
| Play                 | AntMaze-medium | 61.2  | 0.0   | 71.2       | 81.3  | 848           | 2        | 0.0   | 1.0    | $83.6 \pm 4.4$                    |
| Diverse              | AntMaze-medium | 53.7  | 0.0   | 70.0       | 82.0  | . =           | -        | 18.4  | 14.8   | $83.8 \pm 3.5$                    |
| Play                 | AntMaze-large  | 15.8  | 6.7   | 39.6       | 59.3  | 8#3           | <u> </u> | 10.6  | 15.8   | $66.6 \pm 9.8$                    |
| Diverse              | AntMaze-large  | 14.9  | 2.2   | 47.5       | 45.5  | -             | -        | 4.2   | 1.6    | $\textbf{64.8} \pm \textbf{5.5}$  |
| Average (AntMaze)    |                | 50.6  | 23.8  | 63.0       | 74.2  | (4)           | *        | 25.8  | 26.5   | 78.3                              |
| # Action candidates  |                | 1     | 100   | 1          | 32    | 1             | 1        | 50    | 1      | 1                                 |
| # Diffusion steps    |                | -     | _     | -          | 15    | 100           | 100      | 5     | 5      | 15                                |

## **Energy guidance demonstration on images**

A toy example: color guidance

 $\mathcal{E}(oldsymbol{x}) := -\overline{\|h(oldsymbol{x}) - h_{ extsf{tar}}\|_1}$ 

(hue value, computed by Hue-Saturation-Intensity (HSI) decomposition)

