

# **Reinforcement Learning via High-Fidelity Generative Behavior Modeling**

Huayu Chen<sup>1</sup>, Cheng Lu<sup>1</sup>, Chengyang Ying<sup>1</sup>, Hang Su<sup>1</sup>, Jun Zhu<sup>1</sup> 1. Tsinghua University

#### **Motivation**

- Traditional weighted regression methods generally use Gaussian policies which lack distributional expressivity.
- The behavior dataset are usually highly diverse, and the optimal decision space may be multimodal.
- Limited expressivity may lead to the OOD problem during ٠ dynamic programming.



Diffusion models are powerful generative models, which ٠ may potentially be helpful to modeling a heterogeneous behavior dataset.

## **Challenges**

- Diffusion models is an implicit generative model, which means that calculation of log probability is not tractable.
- Weighted regression method cannot be directly applied. •

$$\underset{\theta}{\operatorname{arg\,max}} \quad \mathbb{E}_{(\boldsymbol{s}, \boldsymbol{a}) \sim \mathcal{D}^{\mu}}$$

$$\pi \left[ \frac{1}{Z(\boldsymbol{s})} \log \pi_{\theta}(\boldsymbol{a} | \boldsymbol{s}) \exp \left( lpha Q_{\phi}(\boldsymbol{s}, \boldsymbol{a}) \right) \right]$$

Difficult to analytically calculate

## **Method**

#### **Constrained policy search:**

#### **Diffusion modeling:**

$$= \underset{o}{\operatorname{arg\,min}} \quad \mathbb{E}_{(\boldsymbol{s},\boldsymbol{a})\sim D^{\mu},\boldsymbol{\epsilon},t}[\|\sigma_t \mathbf{s}_{\theta}(\alpha_t \boldsymbol{a} + \sigma_t \boldsymbol{\epsilon}, \boldsymbol{s}, t) + \boldsymbol{\epsilon}\|_2^2]$$



### **D4RL Experiments**

| Algorithm   | MuJoCo Locomotion | Antmaze | Maze2d | Kitchen |
|-------------|-------------------|---------|--------|---------|
| IQL         | 76.9              | 63.0    | 50.0   | 53.3    |
| BAIL        | 71.6              | 46.7    | -      | -       |
| DT          | 74.7              | 18.7    | -      | -       |
| Diffuser    | 75.3              | -       | 119.5  | -       |
| SfBC (ours) | 75.6              | 74.2    | 74.0   | 57.1    |





 $p(\alpha Q_{\phi}(\boldsymbol{s}, \boldsymbol{a}))$